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Strong four-photon conversion regime of cross-phase-modulation-induced
modulational instability
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We investigate theoretically and experimentally the strong conversion regime of parametric four-photon
amplification or induced modulational instability in the normal dispersion regime of propagation in a highly
birefringent fiber. Such optical mixing is observed by injecting a tunable linearly polarized~along the fast axis!
anti-Stokes signal wave copropagating with a pump equisplitted between the fiber axes~i.e., linearly polarized
at 45°! which entail that the two pump modes experience cross-phase modulation. In agreement with a
four-wave model developed to study thedepletedregime of the mixing process, we observe that the strongest
conversion occurs outside the parametric gain bandwidth, or in other words, under conditions ofmodulational
stability of the pump beam. This proves that the optimum signal frequency deviates significantly from the
prediction of the linear stability analysis or the usual phase-matching argument.

PACS number~s!: 41.20.Jb, 47.20.2k, 42.65.Sf, 52.35.Mw
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I. INTRODUCTION

Optical fibers are now widely used to test general c
cepts of nonlinear wave dynamics such as soliton and mo
lational instabilities. In this sense they provide a unique te
bed of the validity of predictions based on nonline
propagation models directly derived from Maxwell equatio
complemented by the nonlinear constitutive relatio
Among the striking phenomena due to the interplay of
dispersive and Kerr effects is the modulational instabi
~MI !, entailing the exponential growth of a perturbation w
long-wavelength at the expense of a cw pump@1–8#. The
amplified perturbation can be either quantum noise~i.e.,
spontaneous MI@6#! or a frequency shifted signal wave~i.e.,
induced MI @7#!. In the frequency domain, MI is equivalen
to a four-photon mixing process where two pump photo
(vp) are anihilated to create a Stoke
(vS5vp2V) –anti-Stokes (va5vp1V) photon pair, with
the energy conservation rule 2vp5vS1va . In the scalar
case, the momentum conservation 2kp5kS1ka can be ful-
filled only in the anomalous group-velocity dispersio
~GVD! regime ~usually for l.1.3mm), thanks to the
intensity-dependent refractive index contributions. Rema
ably, however, MI occurs also with normal GVD, thanks
the coupling between two modes of the e.m. field@9–25#.
Different coupling arrangements involve two polarizati
modes, two different pump wavelengths, or two higher-or
modes. Except for the low-birefringence fiber@11,15,19#,
where the pump polarization might have a nonlinear rotat
and the pump components are generally allowed to excha
energy@24#, all the other mentioned MI processes are s
tained by cross-phase modulation. This means that the p
power is distributed between two modes of the e.m. fi
which experience only mutual nonlinear phase changes w
out exchanging energy~the transfer of energy only occur
between the two pump modes and the new generated or
PRE 611063-651X/2000/61~3!/3139~12!/$15.00
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plified sideband frequencies!. The high-birefringence fiber
seems, however, the most convenient setting for investi
ing a MI process induced genuinely by cross-phase mod
tion, since it does not suffer the drawback of competing fo
wave processes as in the dual-wavelength pumping c
@12#, and the control of the pump mode-balance is simp
than the case of pumping higher order modes@23#.

The question which we address here, concerns the de
opment of MI beyond the initial stage of exponential grow
or in other word the strong conversion regime of parame
amplification. It has been recently shown that, in the tim
domain, MI in the normal GVD leads to the formation o
terahertz trains of dark solitons or polarization domain wa
which can be eventually recurrent along the propagat
@25–27#. The shape of the temporal structures depends
the powers of the different waves and the modulational f
quency@26#. In the frequency domain, this pulse generati
via MI manifests itself by the growing of a cascade of sid
bands. The number of harmonics is related to the temp
shape of the generated pulses, in turn fixed by the in
conditions@26#.

Here, we are rather concerned with the interaction o
single sideband pair~a four-wave interaction! which occurs
for a narrowband MI process such as that taking place i
highly birefringent fiber at moderately low power. We sp
cifically address the problem of determining the signal f
quency detuning which, in an experiment of induced M
permits us to achieve the strongest parametric amplificat

Theoretically, the answer to this question requires to
count for pump depletion, or in other words to construc
theory of nonlinear MI. This can be conveniently done
using a standard approach employed for both dissipa
@28#, and conservative models@29#, which consists to reduce
the original model to a system of coupled ordinary differe
tial equations ~ODEs! for the Fourier mode amplitude
which drive the dynamics. This is particularly useful for no
3139 ©2000 The American Physical Society
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3140 PRE 61EMMANUEL SEVE, GUY MILLOT, AND STEFANO TRILLO
integrable~from the point of view of the spectral transform
method! models such as the one we will deal with, whe
other methods~see, e.g., Ref.@30#, and references therein! to
construct exact periodic spatiotemporal solutions canno
easily applied. This approach has proved useful to desc
conservative nonlinear MI in the scalar case@31,32#, in the
low birefringence fiber@33–35#, as well as cross-phas
modulation induced MI@36,37#. The main outcome of the
theory is the existence of a homoclinic structure of the g
erning models, whose main signature is the fact that str
conversion can be achieved outside the parametric MI g
bandwidth of the process~for narrowband MI!, or in other
words in a regime ofmodulational stabilityof the pump
mode. This is made possible by the existence of a new
gime of instability, where the unstable mode which susta
the mixing is no longer the pump, but a mixed pum
sideband mode@36,37#.

Experimentally, it has recently been demonstrated that
strong conversion regime is indeed observable in exp
ments with relatively short fibers in order to avoid stimulat
Raman scattering@38–41#. Careful measurements in a lo
birefringence fiber has confirmed the theoretical predicti
@38–40#. Here we show that the strong conversion regime
accessible with relatively low powers also in a hig
birefringence fiber under quasi-cw conditions~i.e., with
nanosecond pulses!. The experimental results confirm th
the highest conversion is achieved at a signal frequency
nificantly different from that corresponding to the peak M
gain or nonlinear phase-matching frequency.

This paper is organized as follows. In Sec. II, we intr
duce the nonlinear Schro¨dinger model which governs th
interaction. We recall the basic results about MI, analyze
unidimensional oscillator based on the Fourier mode trun
tion of the original model, and comment on its validity. Se
tion III is devoted to the presentation of the experimen
results concerning the mixing. Finally, we present our c
clusions in Sec. IV.

II. THEORY

A. Coupled nonlinear Schrödinger equations

In a highly birefringent optical fiber, the propagation of
quasimonochromatic fieldE(r ,Z,T)5@Ex(Z,T)exp(ikxZ)
1Ey(Z,T)exp(iky Z)#f(r )exp(2iv0t), with arbitrary polariza-
tion is governed by a set of two incoherently coupled no
linear Schro¨dinger equations~ICNLSEs! @13–15,21,37#

]Ex

]Z
1

1

Vx

]Ex

]T
1 i

k9

2

]2Ex

]T2
5 ig~ uExu21r uEyu2!Ex ,

~1!
]Ey

]Z
1

1

Vy

]Ey

]T
1 i

k9

2

]2Ey

]T2
5 ig~ uEyu21r uExu2!Ey ,

whereEx and Ey are the slowly varying amplitudes of th
linearly polarized components along the slow and fast a
respectively,Vx,y are their group velocities, andk9 is the
group-velocity dispersion~assumed isotropic!. Here g
52pn2 /(lpAeff) is the standard nonlinear coefficient, andr
stands for the cross to parallel susceptibility ratio (r 5 2

3 in
silica fibers!. All these coefficients are evaluated at the pum
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wavelengthlp . Since the fiber length (Z.2 m) used in our
experiments is relatively short, the effect of losses and
man scattering can be reasonably neglected and we do
include them in Eqs.~1!. Hence we are left with the effect o
the anisotropic dispersion@left-hand sides of Eqs.~1!#, and
the fast Kerr nonlinearity which induces self-phase a
cross-phase modulations. The nonlinear coherent coup
terms ~see, e.g., Ref.@40#!, which governs the energy ex
change between the fiber modes have been dropped owin
their fast oscillation during the propagation.

For the sake of comparison between the field dynam
ruled by ICNLSEs and the four-wave truncated evolutio
we will make use of the following normalized version o
Eqs.~1!:

i
]ux

]z
1 id

]ux

]t
2

b

2

]2ux

]t2
1~ uuxu21r uuyu2!ux50,

~2!

i
]uy

]z
2 id

]uy

]t
2

b

2

]2uy

]t2
1~ uuyu21r uuxu2!uy50,

whereux,y[Ex,y /APtot, z[Z/Znl , t[(T2Z/V)T0
21 stands

for a retarded time in a frame traveling at the average gro

velocity V5@ 1
2 (Vx

211Vy
21)#21, Znl5(gPtot)

21 and T0

5Auk9uZnl being the characteristic length and time sca
associated with the total~conserved! input powerPtot5uExu2

1uEyu2, respectively. Hered5 1
2 T0(Vx

212Vy
21)/uk9u is a nor-

malized walk-off parameter~note that it depends inversel
on the square root of total power throughT0), and b
5sgn(k9).

It is well known that any cw eigensolution of Eqs.~1!
with components Ex5Ex05APx exp(ifx) and Ey5Ey0

5APy exp(ify), and phases fx,y5(Px,y1rPy,x)Z, is
modulationally unstable@13–15,21,37#, that is, starting
from the ansatz Ej5@Ej 01Eja exp(2i2p f T)
1Ejs exp(i2p f T)#exp(ifj), j 5x,y, the standard linear stabil
ity analysis~LSA! implying Eja, js!Ej 0 , yields a linearized
problem for the perturbation vector@Exa ,Exs* ,Eya ,Eys* #T

with real positive eigenvaluesl which in turn correspond to
a parametric gainG52 Re(l) in a proper range of the fre
quency detuningf. The outcome of the analysis is summ
rized in Fig. 1 which shows the normalized gaing5G Znl
versus the dimensionless modulational frequencyV
52p f T0 , and the normalized walk-off parameterd, either in
the normal@Figs. 1~a! and 1~b!#, or in the anomalous@Figs.
1~c! and 1~d!# GVD regime, for a beam withPx5Py ~i.e.,
linearly polarized at 45°!. The contour lines ofg in Figs. 1~b!
and 1~d! clearly show the domains of MI. In particular, th
low-frequency branch in Figs. 1~c! and 1~d! is associated
with the usual scalar MI. Our experiment is aimed, inste
at studying the polarization MI associated with the hig
frequency branch. Therefore, in the anomalous GVD regim
even when the latter MI process is probed with an appro
ate choice of frequency and polarization seed, we expect
a spontaneous MI at low frequency could compete and h
per the effects that we are seeking for. For this reas
henceforth we will focus only on the normal GVD regime.
order to show that one can tune the MI gain curve along
d axis in Figs. 1~a! and 1~b! simply by changing the tota
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FIG. 1. MI gaing5g(V,d) as
a function of the normalized fre-
quency detuningV and walk-off
parameterd: ~a! and ~b!, normal
GVD regime;~c! and ~d!, anoma-
lous GVD regime. The dashed
line in ~b! and ~d! corresponds to
the linear phase matching.
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power, we show in Fig. 2 the dimensional spectral gainG
5G(f ) which corresponds to our experimental paramet
~see below! with a total pump peak powerPp5Px1Py
556 W ~dashed curve!, 112 W ~solid curve!, and 160 W
~dot-dashed curve!. We emphasize that, in general, the exp

FIG. 2. MI gainG spectral profiles for a pump wave polarized
45° between the fiber axes with total pump peak powerPp556 W
~dashed!, 112 W ~solid!, and 160 W~dot-dashed!.
s

-

nentially growing mode associated with the narrowband
of Figs. 1~a! and 1~b!, hasall the foursideband components
However, for large enoughd ~i.e., relatively low powers!
only two components survive, namely, the Stokes and a
Stokes polarized along the slow and fast axis, respectiv
@15,37#. This can be shown, e.g., by analyzing the fraction
wave content of the eigenvector corresponding to the
stable eigenvalue in the LSA@15#, and it is supported by
several experimental observations. In this case it is gener
expected that the most simple and effective way to stimu
MI is by means of a copropagating signal beam, polariz
along the fast~slow! axis, with optimum anti-Stokes~Stokes!
frequency detuning from the pump frequency. Here, in
spirit of the LSA, optimum indicates the peak gain detuni
in the curves shown in Figs. 1 and 2. The narrow bandwi
of the process entails that the higher harmonics of the sig
and the generated idler fall outside the parametric gain ba
width and hence are not amplified. However, if the fiber
long enough the conversion towards the signal-idler sideb
pair can be so strong that the undepleted-pump approxi
tion implicit in the LSA is no longer valid. Under these con
ditions, the propagation past the early stage of exponen
amplification must be treated by retaining the pump dep
tion in an exactly solvable model which takes into accou
the minimum number of effective modes@37#. The question
which we specifically address is whether the optimum
frequency still yields the largest amplification in the deplet
stage of propagation.
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B. Four-mode truncation and phase matching

The dynamics of parametric amplification beyond the u
depleted stage of propagation can be investigated by m
of a truncated Fourier expansion of the envelopesux,y in the
ICNLSE @Eq. ~2!#. Our analysis follows the approach o
Refs.@36,37#. There are, however, important extensions to
made in order to describe the experimental results, since
results of Refs.@36,37# are limited to the phase-depende
dynamics of symmetric sidebands, whereas the experime
carried out with strongly asymmetric input~i.e., a vanishing
idler wave!. We begin by expanding the two normalized fie
envelopes in Eqs.~2! as

uj~z,t !5 (
n52N

N

uj ,n~z!e2 i nV t; j 5x,y. ~3!

In principle one can obtain a self-consistent system of OD
for an arbitrary number of sideband modes in Eq.~3!. How-
ever, in practice, the approach turns out to be useful wh
ever the number of effective degrees of freedom of the
duced system is low enough. In the high-birefringence fib
the six-wave mixing of the linearly polarized pump beam
with the four first-order polarized sidebands is already su
cient to favor the onset of spatial chaos@37#. Importantly
enough, however, if the walk-off is relatively high, only on
pair of sidebands is effective~the Stokes and anti-Stoke
sidebands are polarized along the slow and fast axes!. As a
consequence, we consider the evolution equations for
pump @upx,y(z)5Epx,y(z)/Ptot#, Stokes @uS(z)
5ES(z)/Ptot#, and antiStokes@ua(z)5Ea(z)/Ptot# complex
amplitudes, obtained by inserting in the ICNLSE~2!, the
fields ux(z,t)5upx(z)1uS(z)exp(iVt), uy(z,t)5upy(z)
1ua(z)exp(2iVt). We obtain

2 i
dupx

dz
5@ uupxu21r uupyu212uuSu21r uuau2#upx1r uSuaupy*

5
]H

]upx*
, ~4!

2 i
dupy

dz
5@ uupyu21r uupxu212uuau21r uuSu2#upy1r uSuaupx*

5
]H

]upy*
,

2 i
duS

dz
5Fk2 12uupxu21r uupyu21uuSu21r uuau2GuS

1rupxupyua* 5
]H

]uS*
,

2 i
dua

dz
5Fk2 12uupyu21r uupxu21uuau21r uuSu2Gua

1rupxupyuS* 5
]H

]ua*
,

where the Hamiltonian reads
-
ns

e
he

is

s

n-
-

r,

-

he

H5
k

2
~ uuau21uuSu2!1(

j

uuj u4

2
1rupxupyuS* ua* 1c.c.

12~ uupxuSu21uupyuau2!1r ~ uupxuau21uupyuSu2!

~5!

and we have introduced the parameter

k[bV222dV5
2p

gPtot
F2pk9 f 22S 1

Vx
2

1

Vy
D f G . ~6!

Here k[Dk/(gPtot), with Dk5kS1ka2kpx2kpy , repre-
sents a normalized wave vector mismatch, and Eq.~6! fol-
lows immediately from the second-order expansion
kj ( j 5a,S,px,py) consistently with the validity of the
ICNLSE model ~1!–~2!. Linear ~i.e., low-power! phase-
matching, occurs fork50 or V52d. However, the maxi-
mum conversion in the undepleted pump approximation
curs when the phase-matching generalized to include
nonlinear refractive index contributions, usually known
thenonlinearphase-matching condition, is fulfiled@37#. This
can be easily seen from the linearized~i.e., uua,Su!uupx,pyu)
version of the four-wave Eqs.~4! which, in terms of new
variables ūs(z)5uS(z)exp@i(k/212px1py)z# and ūa(z)
5ua(z)exp@i(k/212py1px)z#, read as

upx~z!5Apxe
i ~px1rpy!z, upy~z!5Apye

~py1rpx!z,

2 i
dūS

dz
5rApxpyūa* e2 i ~k1px1py!z,

i
dūa*

dz
5rApxpyūSei ~k1px1py!z, ~7!

where px,y5uupx,pyu2 are constant pump power fraction
(px1py51). From Eqs.~7! it is clear that the pump mode
experience only cross-phase modulation while the maxim
flow of energy to the sidebands occurs for a vanishing ex
nentk1px1py50, which is nothing but the nonlinear phas
matching conditionk52(px1py)521. In Fig. 3 we com-
pare the nonlinear phase matching curve with the optim
MI frequency obtained from the six-wave LSA outline
above. As shown the two curves deviates significantly wh
the normalized walk-off decreases belowd.1 where the
effect of the other Stokes–anti-Stokes pair becomes
longer negligible. At large values ofd ~i.e., low power! the

FIG. 3. Comparison between the optimum MI frequency det
ing ~thick solid curve!, the nonlinear phase-matching curvek
521 ~thin solid line!, and the linear phase-matching frequen
~dashed line! versus the normalized walk-offd.
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nonlinear phase-matching approaches the linear one, a
quired on the physical ground.

Let us consider the regime of intermediate powers~as
employed in the experiment! where the six-wave LSA and
the nonlinear phase-matching condition give consistent
sults ~see Fig. 3!. Here we present a physical argument e
plaining why, in the presence of pump depletion, we exp
stronger conversions to occur at larger signal detuning t
the optimum one~this qualitative argument will be supporte
by quantitative rigorous results in the next subsection!. We
know that the optimum or nonlinear phase-matching f
quency increases with decreasing pump power~see also Fig.
2!. Therefore the effect of a progressive~i.e., locally along
the fiber! pump depletion is that of increasing progressive
the phase-matching frequency. As a consequence a sign
frequency lower or equal to the phase-matching freque
will be progressively driven out of phase-matching, a
hence its conversion rate will eventually decrease. Viceve
a signal with frequency higher than the phase-matching
quency will be pushed toward phase-matching by the ef
of pump depletion, thereby leading to an overall higher c
version. Following this naive picture, a mixing enhancem
can be generally expected even if the signal frequency f
outside the parametric gain bandwidth on the high-freque
edge. We will show below that this is indeed the case,
mixing process being sustained by an unstable mode w
is no longer the pump but a mixed four-wave mode. Incid
tally we recall that in a low-birefringence fiber, the sam
physical argument leads to conclude that the behavior is
opposite. Conversion enhancement takes place on the
frequency side with a maximum outside the linear gain ba
width @38–40#. The reason of this opposite frequency offs
comes from the fact that the nonlinear phase-matching
quency increases with pump power in the weakly birefr
gent fiber@11#.

C. Integrable strong-conversion dynamics

Let us proceed to reduce further the truncated four-w
mixing system~4! by exploiting the invariance or conserva
tion laws which arise from fundamental principles. T
Manley-Rowe relations imply the invariance of the quantit
Pdp5uEpyu22uEpxu2 and PdS5uEau22uESu2, which entail
that photons are converted in pairs from the pump beam
the detuned Stokes–anti-Stokes sidebands. Whereas th
sence of losses implies the conservation of the total po
Ptot5uEpyu21uEpxu21uEau21uESu2. Following the approach o
Refs.@31–37#, we reduce the four-wave mixing equations
a one-dimensional equivalent Hamiltonian oscillator w
two z-dependent variables playing the role of action-an
canonical variables: the single pump intensity fractionh(z)
5uEpx(z)u2/Ptot and the effective phasef(z)5fs(z)
1fa(z)2fpx(z)2fpy(z), wheref j (z) is the phase of each
individual waveuj , j 5px, py, a, S. These variables obe
the system

dh

dz
5

]H

]f
;

df

dz
52

]H

]h
, ~8!

H5rAh~h1ap!@~122h2ap!22a2#cosf

2~k21!h2h2, ~9!
re-
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where the fractional Manley-Rowe invariantsa5PdS/Ptot
and ap5Pdp /Ptot play the role of parameters which ar
specified univocally by the initial conditions. In particula
ap accounts for the pump unbalance: for sake of simplic
we will consider only the case of a balanced pump be
polarized at 45° between the birefringence axes. This is
deed the case which yields the maximum amplification.
this case, the Hamiltonian oscillator~8!,~9!, by settingap
50 andh→2h ~so thath is the total power fraction!, re-
duces to the standard form Hamiltonian system@40#

dh

dz
5

]H

]f
52rhA~12h!22a2 sinf, ~10!

df

dz
52

]H

]h
5k2112h2r

112h223h2a2

A~12h!22a2
cosf,

~11!

H5rhA~12h!22a2 cosf2~k21!h2h2. ~12!

In our experiment, only one sideband is injected in the fib
~i.e., the anti-Stokes!, and hence the initial condition is fixe
to be h05h(z50)512a. Moreover, to compare sets o
data obtained for constant pump power, we find conven
to introduce the mismatch parameterk05Dk/(gPp)
5kPtot /Pp5k/(12a). The four-wave parametric conversio
turns out to be dramatically affected by those eigenmode
the process@the invariant solutionsh5he ,f5fe of Eqs.
~10!–~12!# which are unstable. A detailed derivation of the
eigenmodes is provided in the Appendix. Figure 4 summ
rizes the results. In Fig. 4~a! we show the fractional pump
power he versusk0 of all the relevant stable and unstab
eigenmodes as solid and dashed curves, respectively.
instability range2 5

3 ,k0,2 1
3 of the pump mode (he51,

obtained in the limita50) corresponds to MI in the usua
undepleted pump approximation@33,37#. The midvaluek0
521 realizes the nonlinear phase matching of the fo
wave parametric process. Atk052 1

3 the pump wave be-
comes stable, exchanging its stability with a new bifurcat
mixed-mode eigensolution~a mixture of phase-locked pum

FIG. 4. ~a! Solid ~dashed! curves, fractional pump powerhe of
the spatially stable~unstable! eigenmodes versus the normalize
mismatchk0 ; ~b! dependence of the critical signal fractional pow
a5ac on mismatchk0 .
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3144 PRE 61EMMANUEL SEVE, GUY MILLOT, AND STEFANO TRILLO
and sideband waves, or a FM eigenmodulation!, which exists
in the range2 1

3 ,k0, 5
8 . This mode exists also in the limi

of vanishing signal fractiona50 @37#, as shown by the dot
ted line in Fig. 4~a!. Finally, the mixed-mode exchange i
stability in a secondary bifurcation pointk05 5

8 with a pure
sideband modehe50 ~which, however has scarce relevan
for our problem!. Here, the key point is that the unstable F
eigenmodulation, becomes accessible to our injected field
a critical choice of the signal fractiona5ac . The value of
ac is reported as a function ofk0 in Fig. 4~b!. Note thatac
vanishes when we approach the regime described by the
ear ~undepleted! stability analysis, i.e., fork0→2 1

3 . The
critical value of signal fractionac turns out to mark a tran
sition between the strong and weak conversion regimes.
is conveniently shown in a phase spaceh cos(f),h sin(f)
associated with the reduced Hamiltonian system. In
plane, the field evolution along the fiber corresponds t
contour level of the Hamiltonian. The closest this conto
level approaches the origin, the strongest the conversion
Fig. 5, we display different trajectories for a fixed sign
level a50.1, and different values of the frequency detunin
corresponding tok0521 ~dashed line!, k0520.3258~solid
line!, k050.0091~dot-dashed line!, andk051 ~dotted line!.
The nonlinear phase matching (k0521), gives a relatively
weak achievable conversion~see dashed line!. However, the
conversion is enhanced~see solid curve! for increasing val-
ues ofk0 , entailing a signal detuned on the high-frequen
side from the nonlinear phase-matching condition. Imp
tantly, the conversion keeps on increasing even when
signal is detuned outside the linear gain bandwidth~i.e., for
2 1

3 ,k0), until the critical condition is reached~dot-dashed
curve fork050.0091). For this particular input condition th
evolution occurs along one branch of the double-loop se
ratrix, asymptotically toward the FM eigenmodulation rep
sented by the saddle point. A further increase in freque
results into trajectories which move in the outer domain w
respect to the separatrix, corresponding to a rapidly dropp
conversion. Well above this transition, the trajectories
almost circles, which correspond to a vanishing convers
~see, e.g., the dotted line obtained fork051). To show more
explicitly that the optimum conversion is obtained outsi

FIG. 5. Phase-plane trajectories for the four-wave mixing p
cess with a signal fractiona510%: and different normalized mis
matches:k0521 ~dashed curve!, k0520.3258~solid curve!, ko

50.0091~dot-dashed curve!, ko51 ~dotted curve!.
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the parametric gain bandwidth, in Fig. 6 we display t
maximum idler fraction~thick solid curve! generated along
the fiber as a function of the signal frequency detuningV, as
obtained from the solutions of Eqs.~4!, for a fixed normal-
ized walk-offd and signal fractiona. We also display in Fig.
6 the gaing5g(V) obtained with the same value ofd ~thin
solid curve!. Two essential features are immediately clear.~i!
In the nonlinear regime, the optimum conversion occurs o
side the linear gain bandwidth, with a large factor enhan
ment ~.2! with respect to the signal frequency correspon
ing to the maximum gain.~ii ! The parametric conversion
drops abruptly above a critical frequency, due to the sep
trix crossing discussed above.

D. Validity of the four-wave truncated model

In this subsection we assess the validity of the four-mo
truncation by integrating numerically the ICNLSE model~2!.
The existence of separatrices and the consequent sensi
to the input condition would call for a careful choice of th
numerical scheme. Nevertheless, we make use of a stan
beam propagation~i.e., splitstep! method, whose outcome i
shown to be in good quantitative agreement with the p
dicted dynamics. Let us consider, first, the regime of re
tively low power~i.e.,d.0.5). To fix the ideas, we choose
fixed signal input fractiona55% and a normalized walk-of
d52 representative of a power of 40 W in our experime
Figure 7 shows that for a frequencyV54.05 (k50.2), only
a weak periodic conversion occurs. However, as expec
from the low-dimensional dynamics, only a slight decrea
~; 2% in this example! of the signal frequency is sufficien
to trigger the interaction into the regime of full periodic co
version, as shown in Fig. 8 forV53.95 (k520.2). Simi-
larly we have found that the abrupt transition between
two regimes occurs as well for a fixed frequencyV and a
slight change of signal fractiona. As shown in Figs. 7 and 8
the dynamics is actually ruled by the three injected wa
and the generated idler, and neither higher-order sideba
nor the orthogonally polarized Stokes–anti-Stokes pair
appreciably generated. This is no longer true for sm
enoughd. For instance, let us consider the cased50.5 ~rep-
resentative of a power of about 450 W in our experiment!. If
we set now the modulation frequency at the valueV50.73
which corresponds to the full conversion regime of the fo

-

FIG. 6. Maximum achievable idler power fraction as a functi
of signal frequency detuningV for an input signal fractiona
55% and a walk-off parameterd52. Superimposed is the MI gain
g(V) obtained with the same value ofd.
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wave interaction~described by the same valuek520.2 as in
Fig. 8!, we observe the dynamics shown in Fig. 9. In th
case, both the higher-order sidebands and the orthogon
polarized Stokes–anti-Stokes pair are generated, causin
full conversion to be spoiled. It is clear that the addition
sideband pair induces a short period dynamics which in
feres with the long range dynamics driven by the four-wa
interaction. Recalling thatd depends inversely on the optic
power, this sets a limitation to the maximum power that c
be used to observe the abrupt transition between the
regimes of conversion. Obviously, one has to trade-off
tween this limitation and the need for a sufficient parame
amplification.

III. EXPERIMENTAL STUDY

In this section we present our setup and experimenta
sults. We compare the spontaneous~i.e., building up from
noise! and induced MI or parametric amplification. At th

FIG. 7. Evolution of the spectral content of the linearly pola
ized components ruled by the ICNLSs, as obtained fora50.05~5%
input signal!, d52 and V54.05 (k50.2). Here the normalized
distance isz5Z/Lnl and the frequency is the signal detuningV
52p f T0 .

FIG. 8. As in Fig. 7 forV53.95 (k520.2).
lly
the
l
r-
e

n
o
-
c

e-

power level that we use in the experiment, the parame
amplification of noise occurs with negligible pump depl
tion. Hence, we assume reasonably that the spectral pea
the parametrically amplified noise is well described by t
results of the LSA. Our main focus is to show that, at t
same pump power level, when the parametric mixing
seeded by a finite signal wave and pump depletion beco
definitely relevant, the largest conversion is observed a
significant frequency offset from the observed peak of
spontaneous process.

A. Experimental setup

The experimental setup that we have employed for
observation of induced MI in a highly birefringent fiber
shown in Fig. 10. Quasi-cw waves have been obtained
two different laser sources producing nanosecond pul
With such pulse durations, the two injected waves can
considered as quasi-cw in comparison with the inverse of
frequency detuning~or MI period in the spontantaneou
case! which is of the order of a picosecond or less. The pu
beam was obtained from a cw tunable ring dye laser, pum
by cw argon laser and amplified by a three-stage dye c
This dye amplifier was pumped by a frequency-doubl
injection-seeded, andQ-switched Nd:YAG laser (l
5532.26 nm!, working with a repetition rate of 25 Hz. Th
signal pulses were obtained by frequency shifting
Nd:YAG frequency by means of self-stimulated Raman sc
tering in a multipass carbon dioxide cell. The first Stok
wave, shifted by 41.64 THz from the input laser, was filter
by means of a direct vision prism. The signal and pum
pulses were synchronized by sending the pump beam int
optical delay line. We obtained pump and signal beams w
proper polarization and adjustable power by employing t
laser polarizers and a half-wave plate followed by a set
neutral-density filters. In all our experiments, the pum
wavelength was tuned aroundlp5578 nm whereas the sig
nal wavelength was fixed tols5574.72 nm. The pump and
signal beams were finally combined by a beam splitter, a
focused with a 203microscope objective onto a fiber o
fixed lengthZ51.8 m. The linear parameters of the fiber a
known to be a GVDk9560 ps2 km21 ~at lp5572 nm) and a

FIG. 9. As in Fig. 7 ford50.5 andV50.73 (k520.2).
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group delayVx
212Vy

2151.17 ps/m, the latter value bein
confirmed also from nonlinear measurements~see below!.
The nonlinear coefficientg was only estimated from mea
surements of the effective area, while its final valueg
50.05 W21 m21 is obtained from nonlinear measurements
outlined below. The output light has been analyzed by me
of a spectrometer with a resolution of 1 cm21. The signal has
been detected by a photomultiplier and sampled and a
aged by a boxcar integrator.

B. Experimental results

In a first set of measurements we have injected only
pump beam to record the spectra of parametrically ampli
noise. A typical result obtained forPtot5Pp556 W is shown
in Fig. 11. This also allows us to obtain the value of t
nonlinear coefficientg, whose direct estimation based on t
effective area could be otherwise affected by a large er
Knowing with good accuracy the other parameters~power,
dispersion and group delay!, we obtaing by comparing the
measured frequency of the peak amplified noise with
optimum frequency from the LSA. To verify that the fre
quency of the peak amplified noise depends on power,
have made repeated spectral measurements at several p
values up to about 150 W. The results are summarize
Fig. 12. The solid curve is obtained from LSA by adjustingg
to fit the data. These results clearly demonstrate the non
ear nature of the phase-matching process: the peak MI
quency decreases with power in good agreement with
results of the LSA. For sake of comparison, the dashed
shows how the nonlinear phase-matching frequency obta
from the four-wave model deviates from the observed beh

FIG. 10. Shematic diagram of the experimental apparatus. M
objective microscope, Fs, neutral filters Ps, Glan-Foucault pola
ers,l/2, half-wave plate, DVP, direct vision prism, MPC, multip
passage cell, ODL, optical delay line, PM, photomultiplier, BS
beams splitter, Ls, lenses.
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ior ~as already shown in dimensionless form in Fig. 6!. We
point out that, at power levels higher than 150 W, the sp
taneous MI measurements start to be affected by pu
depletion making the comparison with the results of the L
meaningless~the only way to avoid depletion would be
destructive measurement where the fiber must be cut bac
the power is increased so to maintain constant the ove
gain!.

To test the value of the linear group delay, which is als
key parameter, we have also made a different set of non
ear measurements of spontaneous MI pumped by a
wavelength beam~two orthogonally polarized modes a
wavelengthlp andlq , respectively!. Tuning the wavelength
lq ~i.e., the frequency separation between the pump bea!
amounts to change the birefringence. We report in Fig.
the optimum detuning measured as a function oflq . As in
Ref. @21# we find a critical gap where MI is no longer ob
served@this is due to the existence of a lower bound ind, see
Figs. 1~a! and 1~b!#. Far from the gap the detuning is no
appreciably affected by the nonlinearity and hence it perm

s,
z-

,

FIG. 11. Spontaneous modulational instability spectrum~i.e.,
parametrically amplified spontaneous noise!, as measured for a
fixed total peak powerPtot5Px1Py556 W.

FIG. 12. Measured values of frequency detunings~stars! of the
peak spontaneous MI versus total peak powerPtot5Px1Py . The
detunings are obtained from a set of spectra analogous to th
Fig. 11, recorded for different pump powers. The solid line is
theoretical fit obtained from the six-wave LSA with a nonline
coefficientg50.05. For comparison we report also the four-wa
nonlinear phase-matching curve which corresponds tok521
~dashed line!.
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to extrapolate the value of group delay if the dispersion
known@21#. The results of the LSA~see solid line in Fig. 13!
fit the measured values withVx

212Vy
2151.17 ps/m.

A second set of measurements is performed with a fi
signal seed. The dependence of the signal-idler conversio
displayed in Fig. 14 which shows a set of experimen
power spectra obtained for increasing values of the pu
signal frequency detuningf. These spectra have been r
corded with a fixed pump peak power of 56 W~which cor-
responds to a dimensionless walk-offd51.43), and a fixed
signal input power fractiona510%. In Fig. 14~a! the spon-
taneous MI is also clearly seen. In this case the signal
tuned just below the parametric gain bandwidth set by
spontaneous process~see Fig. 11! and the conversion from
the pump beam toward the signal-idler pair is weak.
shown in Fig. 14~b!, a similar conversion is obtained whe
we tune the signal frequency close to the valuef 52.7 THz
which corresponds to the maximum spontaneous MI~i.e.,
peak of the parametrically amplified noise, see Fig. 11!. On
the other hand, when we increasef towards the highes
bound of the linear gain bandwidth@Figs. 14~c! and 14~d!#
the conversion increases until it reaches its maximum ff
around 3 THz@Fig. 14~d!#. Notice that, at this signal fre
quency, the spontaneous process in Fig. 11 shows no ap
ciable amplification. Above this value, if we keep on increa
ing f, the conversion decreases very rapidly@see Figs. 14~e!
and 14~f!#. Figure 15 compares the measured variation of
generated idler power fraction~stars! with that expected on
the basis of the four-wave model~4!. The pulsed nature o
the waves has been taken into account as explained in d
in Ref. @27#. We also report the theoretical gain curves o
tained by the LSA~dashed line!. As shown, for a frequency
detuning of 3 THz the idler energy reaches its maxim
~14%! and in accordance with the Manley-Rowe invaria
@a5(uEau22uESu2)/Ptot#, the corresponding signal wav
fraction is equal to 24% which amounts to a total frequen

FIG. 13. Frequency detuning of the peak parametrically am
fied noise as obtained in a series of experiments with d
wavelength pumping, where the pump wavelengthlq on the hori-
zontal axis is tuned across the fixed wavelengthlp5574.75 nm of
the other pump beam. The two pump beams have orthogonal p
ization along the fiber axes, and a fixed powerPx5Py520 W each.
The fiber length isZ55 m.
s
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conversion of 38%. We emphasize that with such a stro
pump depletion, the small signal analysis is unable to rep
duce the experimental data, whereas we have a good ag
ment with the four-wave model conversion curve which fu
includes the effect of pump depletion. It is important to no
that the optimum frequency conversion is obtained for a f
quency detuning which is above the highest bound of

i-
l-

ar-

FIG. 14. Output experimental spectra for a total peak pu
power of 56 W, and a signal fractiona510%: ~a! f 52.25 THz,~b!
f 52.7 THz, ~c! f 52.85 THz, ~d! f 53 THz, ~e! f 53.15 THz; ~f!
f 53.3 THz.

FIG. 15. Experimental~stars! and theoretical~solid curve! idler
conversion versus the pump-signal frequency detuningf, with a
pump powerPp556 W, and an input signal fractiona510%.
Dashed curve, linear MI spectral profile~arbitrary units!.
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linear gain bandwidth, or in other words for an initially sig
nificantly phase-mismatched process. To compare with
strong conversion regime of polarization MI in a weakly b
refringent fiber@27,38#, in that case we have achieved a mo
pronounced opposite frequency offset. This is because
nonlinear contribution to the phase mismatch with respec
the birefringent part is less important in highly birefringe
fibers than in weakly birefringent fibers. Consequently,
frequency shift is more significant in low birefringence fibe
@27,38#.

A similar comparison between the experimental conv
sion measured from induced MI in highly birefringent fibe
and the different theoretical models is shown in Fig. 16.
parameters are identical to Fig. 15, except for a total pu
peak power and a signal fraction which are now equal to
W and 5%, respectively. With this larger pump power, w
can see that the difference between the small-signal~unde-
pleted! and large-signal~depleted! model is more pro-
nounced. The frequency shift of the optimum frequency
more relevant~0.6 THz for Pp5112 W against 0.3 THz for
Pp556 W) because the total conversion is around 60%
this pump power level. In this case the agreement betw
the four-wave model and the experimental data is good
modulational frequencies above 2.7 THz. Below this va
the experimental conversion is underestimated because
signal frequencies around 2.3 THz~i.e., the nonlinear phase
matching frequency!, the signal wave lies in the linear gai
bandwith and so we have both the induced and the spo
neous MI. In Fig. 15, for a pump peak powerPp556 W, the
spontaneous MI is less important and so we have a be
agreement with the experimental data.

IV. CONCLUSIONS

In this paper, we have studied the strongly depleted
gime of induced MI in highly birefringent fibers. This non
linear stage of MI has been theoretically analyzed by use
a four Fourier mode truncation of the coupled nonline
Schrödinger equations. As in a weakly birefringent fiber, t
stability analysis of the system eigenmodes reveal that
maximum achievable conversion was obtained for a sig
frequency outside the linear gain bandwidth. We have r

FIG. 16. As in Fig. 15 with a pump powerPp5112 W anda
55%.
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lised a set of quasi-cw experiments with two different pe
powers and we have obtained in both cases a strong
quency conversion from the pump wave towards the fi
order sidebands. As expected, with such a strong pu
depletion, the optimum conversion is obtained for a f
quency detuning which deviates of a significant amount fr
the prediction of the LSA and the nonlinear phase-match
argument.

APPENDIX: EIGENMODES OF THE FOUR-WAVE
INTERACTION

In this appendix, we discuss the existence of the fo
wave eigenmodes and their physical accessibility with
experimental conditions~parametric amplification seeded b
the anti-Stokes sideband!. These eigenmodes, by definition
are those values (h,f)5(he ,fe) which give vanishing de-
rivatives dh/dz5df/dz50 in Eqs.~10!,~11!. The analysis
closely follows that of Ref.@27#, for a low birefringence fiber
described by a system analogous to Eqs.~10!–~12!. In a
Hamiltonian system, the stable eigenmodes are of minor
terest since they can be observed only when they are exc
at the input, that is, wheneverh05he , f05fe , whereh0
5h(z50), f05f(z50). Conversely, the unstable eige
modes affect mostly the dynamics, since they can be reac
from an entire set of different input conditionsh0 ,f0 , which
evolve asymptotically towards the eigenmodehe ,fe . In the
simplest mechanical analogy, stable and unstable eig
modes, correspond to the down-rest and up-rest position
a conventional pendulum, respectively. In the case of
unstable eigenmode excitation, a dramatic output sensiti
to small changes of the input conditions must be expected~in
the example, small energy changes induces qualita
changes of the pendulum motion, i.e., a transition from lib
tion to rotation!. In our experiment, this means small chang
around a critical value of the signal fractiona for a fixed
value of frequency and power~i.e., a fixed k!, or small
changes in frequency for a fixeda and optical power. This
critical input condition is obtained by calculating the eige
modehe ,fe from Eqs.~10! and~11!, and then by exploiting
the invariance of the Hamiltonian between the initial sta
H5H0 (h0512a) and the asymptotic stateH
5He(he ,fe), which gives the following equation

~A1!

where we have introduced the parameterk05Dk/(gPp)
5k/(12a).

From Eqs.~10! and ~11! we find two trivial eigenmodes
which represent the pump modehe51 ~it exists only in the
limit a50) and the sideband modehe50, respectively. To-
gether with the critical value ofa obtained from Eq.~A1!,
their expression reads
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he51H a50, 2
5

3
,k0,2

1

3
,

fe5cos21F2
3

2
~k011!G ,

~A2!

he505 a5
k0

k011
,

5

8
,k0,`

fe5cos21S 2
3

2A112k0
D .

~A3!

These two eigenmodes are unstable over the whole rang
ko reported above, where the phasefe is defined. Other two
eigenstates are mixed-mode eigenmodulations, either o
AM type (fe50), or FM type (fe5p). Only the FM
eigenmodulation is unstable and hence accessible with
asymmetric excitation. In this case, by solving Eq.~A1!
coupled to the equation]f/]zu(he ,fe)50 which follows

from Eq. ~11! with cos(fe)521, we obtain thathe is a real
root of a fourth-order polynomial, with the following depen
dence onk0

p~x!5~405k0
412430k0

312880k0
211800k01100!x4

1~2810k0
426480k0

3210 530k0
229000k021800!x3

1~2324k0
41486k0

314626k0
219090k012700!x2

1~1296k0
311746k0

223600k021710!x21296k0
2

1162k01405, ~A4!
iz.

on

s

n-

m

of

he

he

while the critical value ofa is obtained in the form

a5
q~he ,k0!

r ~he ,k0!
, ~A5!

whereq(he ,k0) andr (he ,k0) are, respectively, a third an
second order polynomial with the following explicit expre
sions:

q~he ,k0!5~90k0
21225k0170!he

31~81k0
31171k0

2

2414k02205!he
21~281k0

32486k0
2

1126k01180!he1225k0
2163k0245,

~A6!

r ~he ,k0!5~81k0
31351k0

21171k0170!he
2

1~281k0
32495k0

22225k0245!he

1225k0
21144k0136. ~A7!

These results are summarized in Fig. 4.
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