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We investigate theoretically and experimentally the strong conversion regime of parametric four-photon
amplification or induced modulational instability in the normal dispersion regime of propagation in a highly
birefringent fiber. Such optical mixing is observed by injecting a tunable linearly pola@tedg the fast axis
anti-Stokes signal wave copropagating with a pump equisplitted between the fibdr.exdimearly polarized
at 459 which entail that the two pump modes experience cross-phase modulation. In agreement with a
four-wave model developed to study tepletedregime of the mixing process, we observe that the strongest
conversion occurs outside the parametric gain bandwidth, or in other words, under conditiodubétional
stability of the pump beam. This proves that the optimum signal frequency deviates significantly from the
prediction of the linear stability analysis or the usual phase-matching argument.

PACS numbgs): 41.20.Jb, 47.26:k, 42.65.Sf, 52.35.Mw

[. INTRODUCTION plified sideband frequenciesThe high-birefringence fiber
seems, however, the most convenient setting for investigat-

Optical fibers are now widely used to test general coning a Ml process induced genuinely by cross-phase modula-
cepts of nonlinear wave dynamics such as soliton and moduion, since it does not suffer the drawback of competing four-
lational instabilities. In this sense they provide a unique testwave processes as in the dual-wavelength pumping case
bed of the validity of predictions based on nonlinear[12], and the control of the pump mode-balance is simpler
propagation models directly derived from Maxwell equationsthan the case of pumping higher order mof23].
complemented by the nonlinear constitutive relations. The question which we address here, concerns the devel-
Among the striking phenomena due to the interplay of theopment of MI beyond the initial stage of exponential growth,
dispersive and Kerr effects is the modulational instabilityor in other word the strong conversion regime of parametric
(MI), entailing the exponential growth of a perturbation with amplification. It has been recently shown that, in the time
long-wavelength at the expense of a cw pufip-8]. The domain, Ml in the normal GVD leads to the formation of
amplified perturbation can be either quantum nofse., terahertz trains of dark solitons or polarization domain walls,
spontaneous MJ6]) or a frequency shifted signal wayee.,  which can be eventually recurrent along the propagation
induced MI[7]). In the frequency domain, Ml is equivalent [25—-27. The shape of the temporal structures depends on
to a four-photon mixing process where two pump photonghe powers of the different waves and the modulational fre-
(wp) are  anihilated to create a  Stokes quency[26]. In the frequency domain, this pulse generation
(0s=w,—)-anti-Stokes @,= w,+ 1) photon pair, with  via Ml manifests itself by the growing of a cascade of side-
the energy conservation rulewd=ws+ w,. In the scalar bands. The number of harmonics is related to the temporal
case, the momentum conservatiok,2 ks+k, can be ful-  shape of the generated pulses, in turn fixed by the input
filed only in the anomalous group-velocity dispersion conditions[26].
(GVD) regime (usually for A>1.3um), thanks to the Here, we are rather concerned with the interaction of a
intensity-dependent refractive index contributions. Remarksingle sideband paifa four-wave interactionwhich occurs
ably, however, MI occurs also with normal GVD, thanks to for a narrowband MI process such as that taking place in a
the coupling between two modes of the e.m. fifdd-25). highly birefringent fiber at moderately low power. We spe-
Different coupling arrangements involve two polarization cifically address the problem of determining the signal fre-
modes, two different pump wavelengths, or two higher-ordeiquency detuning which, in an experiment of induced M,
modes. Except for the low-birefringence fibgt1,15,19,  permits us to achieve the strongest parametric amplification.
where the pump polarization might have a nonlinear rotation Theoretically, the answer to this question requires to ac-
and the pump components are generally allowed to exchangmunt for pump depletion, or in other words to construct a
energy[24], all the other mentioned MI processes are sustheory of nonlinear MI. This can be conveniently done by
tained by cross-phase modulation. This means that the pumysing a standard approach employed for both dissipative
power is distributed between two modes of the e.m. field 28], and conservative mod€l29], which consists to reduce
which experience only mutual nonlinear phase changes withthe original model to a system of coupled ordinary differen-
out exchanging energithe transfer of energy only occurs tial equations(ODE9 for the Fourier mode amplitudes
between the two pump modes and the new generated or am/ich drive the dynamics. This is particularly useful for non-
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integrable(from the point of view of the spectral transform wavelengthk , . Since the fiber lengthZ=2 m) used in our
method models such as the one we will deal with, where eyperiments is relatively short, the effect of losses and Ra-
other methodssee, e.g., Ref30], and references thergito  man scattering can be reasonably neglected and we do not
construct exact periodic spatiotemporal solutions cannot bgcjude them in Egs(1). Hence we are left with the effect of
easily applied. This approach has proved useful to describge anisotropic dispersiofieft-hand sides of Eqg1)], and
conservative nonlinear Ml in the scalar cd84,33, inthe  the fast Kerr nonlinearity which induces self-phase and
low birefringence fiber[33-33, as well as cross-phase cross-phase modulations. The nonlinear coherent coupling
modulation induced MI36,37. The main outcome of the erms (see, e.g., Ref[40]), which governs the energy ex-
theory is the existence of a homoclinic structure of the govthange between the fiber modes have been dropped owing to
erning models, whose main signature is the fact that strongneijr fast oscillation during the propagation.

conversion can be achieved outside the parametric Ml gain For the sake of comparison between the field dynamics

bandwidth of the procesdor narrowband M, or in other  yyled by ICNLSEs and the four-wave truncated evolution,
words in a regime ofmodulational stabilityof the pump e will ' make use of the following normalized version of
mode. This is made possible by the existence of a new rezqgg (1):

gime of instability, where the unstable mode which sustains

the mixing is no longer the pump, but a mixed pump- ou,  du, B d%u,

sideband modg36,37). i—+id—— = +(Juy®+rluy|*u,=0,
Experimentally, it has recently been demonstrated that the 92 a2 42

strong conversion regime is indeed observable in experi- (2

ments with relatively short fibers in order to avoid stimulated _duy,  du, B duy 5 )

Raman scatterin38—41. Careful measurements in a low = 10— §?+(|Uy| +rluy?)uy=0,

birefringence fiber has confirmed the theoretical predictions

[38—4(0. Here we show that the strong conversion regime is . . . 1

accessible with relatively low powers also in a high—Whereuvaz EX'}’/ Ptot’ z=ZIZy, tz.(T_Z/V)TO stands

birefringence fiber under quasi-cw conditiorise., with for a retarded time in a frame traveling at the average group-

nanosecond pulsesThe experimental results confirm that Velocity V=[3 (V, '+V,;)]7% Z,=(yPe) ' and T,

the highest conversion is achieved at a signal frequency sig= V|k”|Z,, being the characteristic length and time scales

nificantly different from that corresponding to the peak MI associated with the totd&tonservedlinput powerP,,=|E,|?

gain or nonlinear phase-matching frequency. +|Ey [, respectively. Heré= 2 TO(Vx’l—Vy’ H71k"| is a nor-
This paper is organized as follows. In Sec. Il, we intro-malized walk-off parametefnote that it depends inversely

duce the nonlinear Schdinger model which governs the on the square root of total power through), and B8

interaction. We recall the basic results about MI, analyze the=sgn’).

unidimensional oscillator based on the Fourier mode trunca- It is well known that any cw eigensolution of Eqg&l)

tion of the original model, and comment on its validity. Sec-with components E,= E,,= /P, expl¢,) and E,=Eyo

tion 1l is devoted to the presentation of the experimentalz\/p—yexpwy), and phases ¢, ,=(Py,+rP,,)Z, is

results concerning the mixing. Finally, we present our conmodulationally unstable[13—-15,21,37, that is, starting

clusions in Sec. IV. from the ansatz  E;=[Ejo+Ej,exp(-i2mfT)
+E;sexp(2mf T)lexp(¢)), j =Xy, the standard linear stabil-
Il. THEORY ity analysis(LSA) implying E;, js<Ejo, Yields a linearized

problem for the perturbation vect({rExa,E:S,Eya,E;‘S]T
with real positive eigenvalues which in turn correspond to
In a highly birefringent optical fiber, the propagation of a a parametric gairfG=2 Re{) in a proper range of the fre-
quasimonochromatic fieldE(r,Z,T)=[E.(Z,T)exp(kZ)  quency detuning. The outcome of the analysis is summa-
+Ey(Z,T)exp(k, 2)]f(r)exp(—iwgt), with arbitrary polariza-  rized in Fig. 1 which shows the normalized gajr G Z,,
tion is governed by a set of two incoherently coupled non-ersus the dimensionless modulational frequengy
linear Schrdinger equation$ICNLSES [13-15,21,37 =2xfT,, and the normalized walk-off paramet@reither in
the normal[Figs. 1a) and Xb)], or in the anomaloufFigs.
1(c) and Xd)] GVD regime, for a beam witlP,=P, (i.e.,
linearly polarized at 45° The contour lines of in Figs. 1(b)
(1) and 1d) clearly show the domains of MI. In particular, the
low-frequency branch in Figs.(d and 1d) is associated

A. Coupled nonlinear Schradinger equations

JE, 1 9E, K" J°E,

—+ =i 2+ 2
7z T, ot T2 2 UBLSHTIEIDE

JE, 1 9E, K" ¢°E . . S .
y Y y
. —=Iy(|Ey|2+r|EX|2)Ey, with the usual scalar MI. Our experiment is aimed, instead,

dZ  Vy aT '2 aT? at studying the polarization Ml associated with the high-
frequency branch. Therefore, in the anomalous GVD regime,

whereE, and E, are the slowly varying amplitudes of the even when the latter MI process is probed with an appropri-
linearly polarized components along the slow and fast axisate choice of frequency and polarization seed, we expect that
respectively,V, , are their group velocities, ankl’ is the  a spontaneous Ml at low frequency could compete and ham-
group-velocity dispersion(assumed isotropjc Here y  per the effects that we are seeking for. For this reason,
=2mn, /(N Aes) is the standard nonlinear coefficient, and henceforth we will focus only on the normal GVD regime. In
stands for the cross to parallel susceptibility ratic=¢ in order to show that one can tune the Ml gain curve along the
silica fiberg. All these coefficients are evaluated at the pumpé axis in Figs. 1a) and Xb) simply by changing the total
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FIG. 1. Ml gaing=g({, ) as
a function of the normalized fre-
quency detuning) and walk-off
parameters: (a) and (b), normal
GVD regime;(c) and(d), anoma-
lous GVD regime. The dashed

line in (b) and (d) corresponds to
the linear phase matching.
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nentially growing mode associated with the narrowband Ml

=G(f) which corresponds to our experimental parameter®f Figs. 1@ and Xb), hasall the foursideband components.

(see below with a total pump peak poweP,=P,+P,
=56 W (dashed curve 112 W (solid curve, and 160 W

However, for large enougld (i.e., relatively low powers
only two components survive, namely, the Stokes and anti-

(dot-dashed curyeWe emphasize that, in general, the expo-Stokes polarized along the slow and fast axis, respectively

3.5 T T

Pt

m_________---—

1 2
Modulational frequency (THz)

15,37). This can be shown, e.g., by analyzing the fractional
wave content of the eigenvector corresponding to the un-
stable eigenvalue in the LSAL5], and it is supported by
several experimental observations. In this case it is generally
expected that the most simple and effective way to stimulate
Ml is by means of a copropagating signal beam, polarized
along the fastslow) axis, with optimum anti-StokeStokes
frequency detuning from the pump frequency. Here, in the
spirit of the LSA, optimum indicates the peak gain detuning
in the curves shown in Figs. 1 and 2. The narrow bandwidth
of the process entails that the higher harmonics of the signal
and the generated idler fall outside the parametric gain band-
width and hence are not amplified. However, if the fiber is
long enough the conversion towards the signal-idler sideband
pair can be so strong that the undepleted-pump approxima-
tion implicit in the LSA is no longer valid. Under these con-
ditions, the propagation past the early stage of exponential
amplification must be treated by retaining the pump deple-
tion in an exactly solvable model which takes into account
the minimum number of effective mod€37]. The question

FIG. 2. Ml gainG spectral profiles for a pump wave polarized at which we specifically address is whether the optimum Mi

45° between the fiber axes with total pump peak poRige 56 W

(dasheg, 112 W (solid), and 160 W(dot-dashey

frequency still yields the largest amplification in the depleted
stage of propagation.
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B. Four-mode truncation and phase matching L_»6
The dynamics of parametric amplification beyond the un- £
depleted stage of propagation can be investigated by means z4
of a truncated Fourier expansion of the envelopgegin the g
ICNLSE [Eqg. (2)]. Our analysis follows the approach of So
Refs.[36,37]. There are, however, important extensions to be %
made in order to describe the experimental results, since the ~=0
0

results of Refs[36,37] are limited to the phase-dependent 1 2 3
dynamics of symmetric sidebands, whereas the experiment is normalized walk-off
carried out with strongly asymmetric inp(te., a vanishing
idler wave. We begin by expanding the two normalized field
envelopes in Eq92) as

FIG. 3. Comparison between the optimum MI frequency detun-
ing (thick solid curve, the nonlinear phase-matching curve
=—1 (thin solid ling, and the linear phase-matching frequency

N (dashed lingversus the normalized walk-off.
u(zh= X ua(2e7' " j=xy. @3 .
n=-n K 2 2 |uj| * ok
H= 2 (lual®+]ug )+; > T TUplipyUSU; +C.C.

In principle one can obtain a self-consistent system of ODEs
for an arbitrary number of sideband modes in ). How- +2(JupeUig 2+ [UpyUal®) + 1 (Jupeta 2+ |upyus|?)
ever, in practice, the approach turns out to be useful when-
ever the number of effective degrees of freedom of the re- (5
duced system is low enough. In the high-birefringence fiberg, 4 \we have introduced the parameter
the six-wave mixing of the linearly polarized pump beams
with the four first-order polarized sidebands is already suffi- 2 1 1
cient to favor the onset of spatial chaf87]. Importantly k=pN*-250= S v, V_)f} (6)
enough, however, if the walk-off is relatively high, only one Yot Y
pair of sidebands is effectivéhe Stokes and anti-Stokes Hegre k=AK/(yPyy), With Ak=Kkg+ka—kp—Kpy, repre-
sidebands are polarized along the slow and fast)axesa  sents a normalized wave vector mismatch, and (Bgfol-
consequence, we consider the evolution equations for thgs immediately from the second-order expansion of
pump  [Upyy(2)=Epyxy(2)/Prod,  Stokes — [us(z)  k; (j=a,S,pxpy) consistently with the validity of the
=Eg(2)/Piotl, and antiStoke$u,(z) =Ea(2)/Pior] cOmMplex  |CNLSE model (1)—(2). Linear (i.e., low-powej phase-
amplitudes, obtained by inserting in the ICNLSB), the  matching, occurs fok=0 or Q=25. However, the maxi-
fields uy(z,t)=up(2) +us(z)exp(dt), uy(z,t)=up(z)  mum conversion in the undepleted pump approximation oc-
+U,(2)exp(=iQt). We obtain curs when the phase-matching generalized to include the
nonlinear refractive index contributions, usually known as
* the nonlinearphase-matching condition, is fulfilg@7]. This
PY  can be easily seen from the lineariz@e., |u, g/ <|Upy pyl)
version of the four-wave Eq<4) which, in terms of new

27k f2—

_du
- d;X:[|upx|2+r|upy|2+ 2|ugl®+r Uy ?Jupet+ T UsU,U

“a (a)  variables Ug(z)=us(z)exi(x/2+ 2p,+p))z] and Uy(2)
&u;x :ua(z)eXF[|(K/2+2py+px)z], read as
9Upy 2 2 2 5 Upx(2) = P P PYIZ U (2) = pyelPy T TPoZ,
i *
—i g5 =Upy+ rlupyl®+ 2ug|>+ rlug?Jupy+ 1 ustauy, -
JH —id—uzszr pxpyﬁge*i(ﬁpﬁpy)z'
==
u - |
d i d—za =r poyUSeI(K+ Pyt py)Z’ (7)
. dus K
“igz = |2t 2lupdHrlupy P +ugd® rlugl? us

where px,y=|upxypy|2 are constant pump power fractions
JH (pxtpy=1). From Eqgs(7) it is clear that the pump modes
experience only cross-phase modulation while the maximum
flow of energy to the sidebands occurs for a vanishing expo-
nentx+ p,+ p,=0, which is nothing but the nonlinear phase
matching conditionc= —(px+ py) = — 1. In Fig. 3 we com-
pare the nonlinear phase matching curve with the optimum
MI frequency obtained from the six-wave LSA outlined
ﬁ above. As shown the two curves deviates significantly when
uy’ the normalized walk-off decreases bela¥=1 where the
effect of the other Stokes—anti-Stokes pair becomes no
where the Hamiltonian reads longer negligible. At large values df (i.e., low powey the

+ru, U, ur=—r—1,
pxtloyta =75

. du,
——=

= u
dz a

K
E+2|upy|2+r|upx|2+|ua|2+r|us|2

* _
+rUpUp Us =
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nonlinear phase-matching approaches the linear one, as re-

—
)
|
)

quired on the physical ground. %
Let us consider the regime of intermediate pow@s S 3
employed in the experimentvhere the six-wave LSA and §0'5' } (a) 1
the nonlinear phase-matching condition give consistent re- S 3
sults (see Fig. 3. Here we present a physical argument ex- Mo Setesietttratdetetuteis

plaining why, in the presence of pump depletion, we expect
stronger conversions to occur at larger signal detuning than
the optimum onéthis qualitative argument will be supported
by quantitative rigorous results in the next subsegtidke
know that the optimum or nonlinear phase-matching fre-

|
o

|
N
th
o
th
W

Mismatch K

—

Signal fraction &
=)
in
T

guency increases with decreasing pump po(see also Fig. (b)
2). Therefore the effect of a progressivies., locally along

the fibe) pump depletion is that of increasing progressively 0 L A L

the phase-matching frequency. As a consequence a signal at -3 -25 9 25 5

Mismatch K
frequency lower or equal to the phase-matching frequency

will be progressively driven out of phase-matching, and FIG. 4. (a) Solid (dashed curves, fractional pump powey, of
hence its conversion rate will eventually decrease. Viceversahe spatially stablgunstabl¢ eigenmodes versus the normalized
a signal with frequency higher than the phase-matching fremismatchx, ; (b) dependence of the critical signal fractional power
guency will be pushed toward phase-matching by the effect=a.; on mismatchx, .

of pump depletion, thereby leading to an overall higher con-

version. Following this naive picture, a mixing enhancemenwhere the fractional Manley-Rowe invarianis= Pys/Py

can be generally expected even if the signal frequency falland a,=Py,/P play the role of parameters which are
outside the parametric gain bandwidth on the high-frequencgpecified univocally by the initial conditions. In particular,
edge. We will show below that this is indeed the case, ther, accounts for the pump unbalance: for sake of simplicity,
mixing process being sustained by an unstable mode whictve will consider only the case of a balanced pump beam
is no longer the pump but a mixed four-wave mode. Inciden{polarized at 45° between the birefringence axes. This is in-
tally we recall that in a low-birefringence fiber, the samedeed the case which yields the maximum amplification. In
physical argument leads to conclude that the behavior is jughis case, the Hamiltonian oscillat8),(9), by setting
opposite. Conversion enhancement takes place on the low=0 and —2#% (so thaty is the total power fraction re-
frequency side with a maximum outside the linear gain bandeduces to the standard form Hamiltonian sys{ei

width [38—4(0. The reason of this opposite frequency offset

comes from the facti that the nonlinegr phase—matchjng _fre— d_77: ﬁ: —rnmsinqﬁ, (10)
guency increases with pump power in the weakly birefrin- dz d¢
gent fiber[11].
d¢ oH 1+292— 39— a?
C. Integrable strong-conversion dynamics dz ag 1+2y-r Ja—n-a? cose,

Let us proceed to reduce further the truncated four-wave (11
mixing system(4) by exploiting the invariance or conserva-
tion laws which arise from fundamental principles. The H=r7J(1-n)?-a’cosp—(k—1)np—n° (12
Manley-Rowe relations imply the invariance of the quantities ) ) o ) .
Pdp:|Epy|2—|pr|2 and Pys=|E,|2—|Eg/%, which entail In our experiment, only one sideband is injected in the fiber

that photons are converted in pairs from the pump beams id-€., the anti-Stokgsand hence the initial condition is fixed
the detuned Stokes—anti-Stokes sidebands. Whereas the 48-P€ 70=7(z=0)=1—a. Moreover, to compare sets of
sence of losses implies the conservation of the total poweiata obtained for constant pump power, we find convenient
Prot=|Epyl2+ [Epl?+|Eo*+|E42 Following the approach of to introduce the mismatch parameteto=Ak/(yPp)
Refs.[31-37, we reduce the four-wave mixing equations to = % Pot/Pp=«/(1~a). The four-wave parametric conversion

a one-dimensional equivalent Hamiltonian oscillator withtUrns out to be dramatically affected by those eigenmodes of
two zdependent variables playing the role of action-angleth® procesgthe invariant solutionsy= 7., ¢=¢e of Egs.
canonical variables: the single pump intensity fractipiz) ~ (10—(12)] which are unstable. A detailed derivation of these
=|Ep(2)|?/Pyx and the effective phasep(z) = b«(2) eigenmodes is provided in the Appendix. Figure 4 summa-
+ ¢ha(2) — Ppu(2) — Bpy(2), Wheregh(2) is the phase of each F1Z€S the results. In Fig.(d4) we show the fractional pump

individual waveu;, j=px, py, & S These variables obey POWET 7 VErsusg of all the relevant stable and unstable
the system eigenmodes as solid and dashed curves, respectively. The
instability range— 3 <ko,<—3 of the pump mode £.=1,
dnp oH do JoH obtained in the limita=0) corresponds to Ml in the usual
dz ﬁ? dz an’ (8) undepleted pump approximatid83,37]. The midvaluex,
=—1 realizes the nonlinear phase matching of the four-
HZT\/ﬂ(ﬂ+ap)[(1—277— ap)z—az]cos¢ wave parametric process. Al,=—3 the pump wave be-

comes stable, exchanging its stability with a new bifurcating
—(k—1)p— 7, 9 mixed-mode eigensolutiofa mixture of phase-locked pump
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1 ) . ) FIG. 6. Maximum achievable idler power fraction as a function
-1 =05 05 1 of signal frequency detuning) for an input signal fractiona

0
neos(@) =5% and a walk-off parametet= 2. Superimposed is the MI gain

FIG. 5. Phase-plane trajectories for the four-wave mixing pro-9({2) obtained with the same value of

cess with a signal fraction=10%: and different normalized mis-
matches:ko=—1 (dashed curve ko= —0.3258(solid curvg, x,  the parametric gain bandwidth, in Fig. 6 we display the
=0.0091(dot-dashed curye x,=1 (dotted curve: maximum idler fraction(thick solid curve generated along
the fiber as a function of the signal frequency detulings
and sideband waves, or a FM eigenmodulatierhich exists  obtained from the solutions of Eq&}), for a fixed normal-
in the range— 3 <k,<3. This mode exists also in the limit ized walk-off 5 and signal fractionr. We also display in Fig.
of vanishing signal fractiom= 0 [37], as shown by the dot- 6 the gaing=g({}) obtained with the same value éf(thin
ted line in Fig. 4a). Finally, the mixed-mode exchange its solid curve. Two essential features are immediately cléar.
stability in a secondary bifurcation poirt,=3 with a pure  In the nonlinear regime, the optimum conversion occurs out-
sideband modey.= 0 (which, however has scarce relevanceside the linear gain bandwidth, with a large factor enhance-
for our problem. Here, the key point is that the unstable FM ment(=2) with respect to the signal frequency correspond-
eigenmodulation, becomes accessible to our injected field fdng to the maximum gain(ii) The parametric conversion
a critical choice of the signal fraction=«.. The value of drops abruptly above a critical frequency, due to the separa-
«a, is reported as a function of, in Fig. 4b). Note thata,  trix crossing discussed above.
vanishes when we approach the regime described by the lin-
ear (undepleteyl stability analysis, i.e., forko— —3. The
critical value of signal fractiony. turns out to mark a tran-
sition between the strong and weak conversion regimes. This In this subsection we assess the validity of the four-mode
is conveniently shown in a phase spageos(p),nsin(¢)  truncation by integrating numerically the ICNLSE mod2).
associated with the reduced Hamiltonian system. In thid'he existence of separatrices and the consequent sensitivity
plane, the field evolution along the fiber corresponds to do the input condition would call for a careful choice of the
contour level of the Hamiltonian. The closest this contournumerical scheme. Nevertheless, we make use of a standard
level approaches the origin, the strongest the conversion. Ibeam propagatiofi.e., splitstep method, whose outcome is
Fig. 5, we display different trajectories for a fixed signal shown to be in good quantitative agreement with the pre-
level «= 0.1, and different values of the frequency detuningsdicted dynamics. Let us consider, first, the regime of rela-
corresponding tay= — 1 (dashed ling ko= —0.3258(solid tively low power(i.e., §>0.5). To fix the ideas, we choose a
line), ko=0.0091(dot-dashed ling andxy,=1 (dotted ling.  fixed signal input fractionr=5% and a normalized walk-off
The nonlinear phase matchingd=—1), gives a relatively 6=2 representative of a power of 40 W in our experiment.
weak achievable conversideee dashed lineHowever, the  Figure 7 shows that for a frequen€y=4.05 (x=0.2), only
conversion is enhancddee solid curvefor increasing val- a weak periodic conversion occurs. However, as expected
ues ofkg, entailing a signal detuned on the high-frequencyfrom the low-dimensional dynamics, only a slight decrease
side from the nonlinear phase-matching condition. Impor{~ 2% in this exampleof the signal frequency is sufficient
tantly, the conversion keeps on increasing even when tht trigger the interaction into the regime of full periodic con-
signal is detuned outside the linear gain bandwid#, for ~ version, as shown in Fig. 8 fd2=3.95 (x=—0.2). Simi-
— <), until the critical condition is reache@ot-dashed larly we have found that the abrupt transition between the
curve forky=0.0091). For this particular input condition the two regimes occurs as well for a fixed frequer@yand a
evolution occurs along one branch of the double-loop sepaslight change of signal fractioa. As shown in Figs. 7 and 8,
ratrix, asymptotically toward the FM eigenmodulation repre-the dynamics is actually ruled by the three injected waves
sented by the saddle point. A further increase in frequencynd the generated idler, and neither higher-order sidebands,
results into trajectories which move in the outer domain withnor the orthogonally polarized Stokes—anti-Stokes pair are
respect to the separatrix, corresponding to a rapidly droppingppreciably generated. This is no longer true for small
conversion. Well above this transition, the trajectories areenoughé. For instance, let us consider the ca&e0.5 (rep-
almost circles, which correspond to a vanishing conversiomesentative of a power of about 450 W in our experimelifit
(see, e.g., the dotted line obtained fgy=1). To show more we set now the modulation frequency at the vafue 0.73
explicitly that the optimum conversion is obtained outsidewhich corresponds to the full conversion regime of the four-

D. Validity of the four-wave truncated model
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FIG. 7. Evolution of the spectral content of the linearly polar- FIG. 9. As in Fig. 7 for6=0.5 andQ)=0.73 (k= —0.2).
ized components ruled by the ICNLSSs, as obtained+er0.05 (5%
input signa), 6=2 and1=4.05 (x=0.2). Here the normalized pnower level that we use in the experiment, the parametric
distance isz=Z/L, and the frequency is the signal detunifiy amplification of noise occurs with negligible pump deple-
=2mf To. tion. Hence, we assume reasonably that the spectral peak of
the parametrically amplified noise is well described by the
wave interactior{idescribed by the same valee= —0.2 asin  results of the LSA. Our main focus is to show that, at the
Fig. 8), we observe the dynamics shown in Fig. 9. In thissame pump power level, when the parametric mixing is
case, both the higher-order sidebands and the orthogonalgeeded by a finite signal wave and pump depletion becomes
polarized Stokes—anti-Stokes pair are generated, causing thefinitely relevant, the largest conversion is observed at a
full conversion to be spoiled. It is clear that the additionalsignificant frequency offset from the observed peak of the
sideband pair induces a short period dynamics which interspontaneous process.
feres with the long range dynamics driven by the four-wave
interaction. Recalling thaf depends inversely on the optical
power, this sets a limitation to the maximum power that can
be used to observe the abrupt transition between the two The experimental setup that we have employed for the
regimes of conversion. Obviously, one has to trade-off beobservation of induced MI in a highly birefringent fiber is
tween this limitation and the need for a sufficient parametricshown in Fig. 10. Quasi-cw waves have been obtained by
amplification. two different laser sources producing nanosecond pulses.
With such pulse durations, the two injected waves can be
. EXPERIMENTAL STUDY considered as quasi-cw in comparison with the inverse of the
. ] ) frequency detuninglor MI period in the spontantaneous
In this section we present our setup and experimental recasg which is of the order of a picosecond or less. The pump
sults. We compare the spontanedus., building up from  peam was obtained from a cw tunable ring dye laser, pumped
This dye amplifier was pumped by a frequency-doubled,
injection-seeded, andQ-switched Nd:YAG laser X
=532.26 nm, working with a repetition rate of 25 Hz. The
signal pulses were obtained by frequency shifting the
Nd:YAG frequency by means of self-stimulated Raman scat-
tering in a multipass carbon dioxide cell. The first Stokes
wave, shifted by 41.64 THz from the input laser, was filtered
5 0 13 by means of a direct vision prism. The signal and pump
frequency pulses were synchronized by sending the pump beam into an
optical delay line. We obtained pump and signal beams with
proper polarization and adjustable power by employing two
laser polarizers and a half-wave plate followed by a set of
neutral-density filters. In all our experiments, the pump

A. Experimental setup

o
n

(=]

Intensity (slow)

N
(=

00 wavelength was tuned around=578 nm whereas the sig-
g f1> nal wavelength was fixed thg=574.72 nm. The pump and

signal beams were finally combined by a beam splitter, and
focused with a 28 microscope objective onto a fiber of
fixed lengthZ=1.8 m. The linear parameters of the fiber are
FIG. 8. As in Fig. 7 forQ=3.95 (k=—0.2). known to be a GVLk”=60 pgkm?! (atA,=572nm) and a

frequency
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—H BS FIG. 11. Spontaneous modulational instability spectriim.,
parametrically amplified spontaneous ngjsas measured for a
w h P lfl fixed total peak poweP ,=P,+P,=56 W.
M\ EI |_| M ior (as already shown in dimensionless form in Fig. \&/e

point out that, at power levels higher than 150 W, the spon-
objective microscope, Fs, neutral filters Ps, Glan-Foucault p°|arizdepleti0n making the comparison with the results of the LSA
ers,\/2, half-wave plate, DVP, direct vision prism, MPC, multiple meaninglesgthe only way to avoid depletion would be a
passage cell, ODL, optical delay line, PM, photomultiplier, BSS, yostr ctive measurement where the fiber must be cut back as
beams splitter, Ls, lenses. the . -
power is increased so to maintain constant the overall

B B . gain).

group delayV, vy t= 1.17ps/m, the latter value being = Tq test the value of the linear group delay, which is also a
confirmed also from nonlinear measureme(dse below. ey parameter, we have also made a different set of nonlin-
The nonlinear coefficieny was only estimated from mea- oar measurements of spontaneous MI pumped by a dual
surements of t_he effgctive area, v_vhile its final valye wavelength beam(two orthogonally polarized modes at
=0._05 W mtis obtained f_rom nonlinear measurements aswavelength\p and\, respectively. Tuning the wavelength
outlined below. The output light has been analyzed by mean§q (i.e., the frequency separation between the pump beams
of a spectrometer with a resolution of 1 ¢ The signal has amounts to change the birefringence. We report in Fig. 13
been detected by a photomultiplier and sampled and avegpg optimum detuning measured as a function gf As in

aged by a boxcar integrator. Ref. [21] we find a critical gap where Ml is no longer ob-
_ servedthis is due to the existence of a lower boundsjrsee
B. Experimental results Figs. 1@ and Ib)]. Far from the gap the detuning is not

In a first set of measurements we have injected only th&ppreciably affected by the nonlinearity and hence it permits
pump beam to record the spectra of parametrically amplified
noise. A typical result obtained fd?,,=P,=56 W is shown
in Fig. 11. This also allows us to obtain the value of the
nonlinear coefficienty, whose direct estimation based on the
effective area could be otherwise affected by a large error.
Knowing with good accuracy the other parametgrswer,
dispersion and group delaywe obtainy by comparing the
measured frequency of the peak amplified noise with the
optimum frequency from the LSA. To verify that the fre-
guency of the peak amplified noise depends on power, we
have made repeated spectral measurements at several power
values up to about 150 W. The results are summarized in £ 12 Measured values of frequency detunifsars of the
Fig. 12. The solid curve is obtained from LSA by adjusting peak spontaneous MI versus total peak poRgg=P,+ P,. The
to fit the data. These results clearly demonstrate the nonlingetunings are obtained from a set of spectra analogous to that of
ear nature of the phase-matching process: the peak MI fresig. 11, recorded for different pump powers. The solid line is a

quency decreases with power in good agreement with thgheoretical fit obtained from the six-wave LSA with a nonlinear
results of the LSA. For sake of comparison, the dashed lingoefficient y=0.05. For comparison we report also the four-wave

shows how the nonlinear phase-matching frequency obtainegbnlinear phase-matching curve which correspondsxte—1
from the four-wave model deviates from the observed behawdashed ling

RN
M DN @

frequency detuning (THz)

50 100 150
power (W)
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fied noise as obtained in a series of experiments with dual- &,
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wavelength pumping, where the pump wavelengthon the hori-
zontal axis is tuned across the fixed wavelengfl=574.75 nm of E (o) E ()
the other pump beam. The two pump beams have orthogonal polar- F
ization along the fiber axes, and a fixed powgr= P, =20 W each. 1 -
The fiber length iZ=5 m. OlF} - 3 0.1F E

to extrapolate the value of group delay if the dispersion is

known[21]. The results of the LSAsee solid line in Fig. 18 001 L 001 S
fit the measured values with, '—V, *=1.17 ps/m. '
A second set of measurements is performed with a finite Frequency detuning (THz)

signal seed. The dependence of the signal-idler conversion is

displayed in Fig. 14 which shows a set of experimental FIG. 14. Output experimental spectra for a total peak pump
power spectra obtained for increasing values of the pumpRower of 56 W, and a signal fractian=10%: (a) f=2.25 THz, (b)
signal frequency detuning These spectra have been re- f=2.7THz, (c) f=2.85THz, (d) f=3THz, (¢) f=3.15THz; ()
corded with a fixed pump peak power of 56 Which cor- f=3.3THz.

responds to a dimensionless walk-@ff 1.43), and a fixed _ ) )
signal input power fractiom=10%. In Fig. 14a) the spon-  conversion of 38%. We emphasize that with such a strong

taneous Ml is also clearly seen. In this case the signal waBUMP depletion, the small signal analysis is unable to repro-
tuned just below the parametric gain bandwidth set by théluce the experimental data, whereas we have a good agree-
spontaneous procegsee Fig. 11 and the conversion from Ment with the four-wave model conversion curve which fully
the pump beam toward the signal-idler pair is weak. Asincludes thg effect of pump depletlorj. It is important to note
shown in Fig. 14b), a similar conversion is obtained when that the optimum freq_uen_cy conversion is obtained for a fre-
we tune the signal frequency close to the value2.7 THz ~ quency detuning which is above the highest bound of the
which corresponds to the maximum spontaneous (M.,

peak of the parametrically amplified noise, see Fig. On 15 T T T T
the other hand, when we increa$eiowards the highest R
bound of the linear gain bandwidflrigs. 14c) and 14d)] ;:
the conversion increases until it reaches its maximumf for
around 3 THz[Fig. 14d)]. Notice that, at this signal fre-
guency, the spontaneous process in Fig. 11 shows no appre-
ciable amplification. Above this value, if we keep on increas-
ing f, the conversion decreases very rapitige Figs. 1)

and 14f)]. Figure 15 compares the measured variation of the
generated idler power fractiofstarg with that expected on

the basis of the four-wave modét). The pulsed nature of * #f,
the waves has been taken into account as explained in detail 0 N
in Ref. [27]. We also report the theoretical gain curves ob- 5 2 25 35
tained by the LSA(dashed ling As shown, for a frequency Modulationsl frequency (THz)
detuning of 3 THz the idler energy reaches its maximum F|G. 15. Experimentalstars and theoreticalsolid curve idler
(14%) and in accordance with the Manley-Rowe invariantconversion versus the pump-signal frequency deturfjngith a
[@=(|E4|?—|Eg?)/Pw, the corresponding signal wave pump powerP,=56 W, and an input signal fraction=10%.
fraction is equal to 24% which amounts to a total frequencyDashed curve, linear MI spectral profilarbitrary units.
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25

lised a set of quasi-cw experiments with two different peak
powers and we have obtained in both cases a strong fre-
quency conversion from the pump wave towards the first-

20 | order sidebands. As expected, with such a strong pump
~ depletion, the optimum conversion is obtained for a fre-
3;/15 - quency detuning which deviates of a significant amount from
2 the prediction of the LSA and the nonlinear phase-matching
8 argument.

510 -
=

APPENDIX: EIGENMODES OF THE FOUR-WAVE
INTERACTION

In this appendix, we discuss the existence of the four-
1 Mo dula%ional fre uenc3 (THz) 4 wave eigenmodes and their physical accessibility with our
o _ quency experimental condition§parametric amplification seeded by
75':0/'6" 16. As in Fig. 15 with a pump powd?,=112W anda 5 5nti-Stokes sidebandThese eigenmodes, by definition,
o are those valuesr(, ¢) = (7., %) Which give vanishing de-
linear gain bandwidth, or in other words for an initially sig- "vativesdn/dz=d¢/dz=0 in Egs.(10),(11). The analysis
nificantly phase-mismatched process. To compare with thglosely follows that of Refl27], for a low birefringence fiber
strong conversion regime of polarization M in a weakly bi- described by a system analogous to EG€)—(12). In a
refringent fibe{ 27,38, in that case we have achieved a moreHamllto_nlan system, the stable eigenmodes are of minor in-
pronounced opposite frequency offset. This is because thi€rest since they can be observed only when they are excited
nonlinear contribution to the phase mismatch with respect t&t the input, that is, whenevejo= 7., ¢o= e, wherer,
the birefringent part is less important in highly birefringent = 7(2=0), ¢o=#(z=0). Conversely, the unstable eigen-
fibers than in weakly birefringent fibers. Consequently, themodes affect mostly the dynamics, since they can be reached
frequency shift is more significant in low birefringence fibers from an entire set of different input conditiong, ¢, which
[27,38. evolve asymptotically towards the eigenmogle ¢, . In the
A similar comparison between the experimental converSimplest mechanical analogy, stable and unstable eigen-
sion measured from induced MI in highly birefringent fibers modes, correspond to the down-rest and up-rest positions of
and the different theoretical models is shown in Fig. 16. Alla conventional pendulum, respectively. In the case of the
parameters are identical to Fig. 15, except for a total pumpinstable eigenmode excitation, a dramatic output sensitivity
peak power and a signal fraction which are now equal to 1130 small changes of the input conditions must be expe@ted
W and 5%, respectively. With this larger pump power, wethe example, small energy changes induces qualitative
can see that the difference between the small-signatle- ~ changes of the pendulum motion, i.e., a transition from libra-
pleted and large-signal(depleted model is more pro- tionto rotati(_)r_). In our experiment, this means small changes
nounced. The frequency shift of the optimum frequency isaround a critical value of the signal fractian for a fixed
more relevant0.6 THz for P,=112 W against 0.3 THz for value of frequency and poweli.e., a fixed ), or small
P,=56 W) because the total conversion is around 60% fochanges in frequency for a fixed and optical power. This
this pump power level. In this case the agreement betweegfitical input condition is obtained by calculating the eigen-
the four-wave model and the experimental data is good fof0dee, . from Eqgs.(10) and(11), and then by exploiting
modulational frequencies above 2.7 THz. Below this valudhe invariance of the Hamiltonian between the initial state
the experimental conversion is underestimated because f6t=Ho (7=1—«) and the asymptotic stateH
signal frequencies around 2.3 TKiz., the nonlinear phase- =He(7e,®e), Which gives the following equation
matching frequengy the signal wave lies in the linear gain
bandwith and so we have both the induced and the sponta-
neous MI. In Fig. 15, for a pump peak powRg=56 W, the (1= 9,)*—a*1"?cos ¢, — (ko(1—a)— 1) 5,— 7>
spontaneous MI is less important and so we have a better ™ -
agreement with the experimental data.

Hg(ng:l:g,a,fc)
=—(ko(l=@)—D)(1-a)—(1—a)%,

-~
Ho(no=1~a,¢,a,x)

(A1)
IV. CONCLUSIONS

In this paper, we have studied the strongly depleted re-
gime of induced Ml in highly birefringent fibers. This non- where we have introduced the parametgy=Ak/(yP,)
linear stage of MI has been theoretically analyzed by use of «/(1— «).
a four Fourier mode truncation of the coupled nonlinear From Eqgs.(10) and(11) we find two trivial eigenmodes,
Schralinger equations. As in a weakly birefringent fiber, thewhich represent the pump modg=1 (it exists only in the
stability analysis of the system eigenmodes reveal that thémit «=0) and the sideband modg= 0, respectively. To-
maximum achievable conversion was obtained for a signagether with the critical value o& obtained from Eq(Al),
frequency outside the linear gain bandwidth. We have reatheir expression reads
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5 1
a=0, _§<K0<—§,
7e=1 3 (A2)
pe=cos 1 — E(Ko"r 1),
_ Ko 5
a= m, §< Ko<®
7e=0 3 (A3)
=cos ! — ———] .
de ( 2\1+ 2k,

These two eigenmodes are unstable over the whole range
K, reported above, where the phaggis defined. Other two
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while the critical value ofx is obtained in the form

_ a(7e, ko)

“ r(’?eaKo) , (AS)

whereq(7e,k0) andr(7ne,kg) are, respectively, a third and
second order polynomial with the following explicit expres-
sions:

A( 76, ko) = (90k3+ 225k + 70) 3+ (81x3+ 171k
— 414kq— 205) 72+ (— 81k3— 486«3
+ 126K+ 180) 76+ 225¢3+ 63Ky — 45,
(A6)

of

eigenstates are mixed-mode eigenmodulations, either of the

AM type (¢$.=0), or FM type (@p.=m). Only the FM

F (e, ko) = (81k3+351k3+ 171ko+ 70) 72

eigenmodulation is unstable and hence accessible with the

asymmetric excitation. In this case, by solving H#l)
coupled to the equatiom?qb/dzl(,?e,,ﬁe)zo which follows

from Eq.(11) with cos(®s)=—1, we obtain thaty, is a real
root of a fourth-order polynomial, with the following depen-
dence onkg

p(X) = (405k3+ 2430¢3+ 2880¢2+ 1800, + 100 x*
+(—810x§— 6480¢3— 10 530¢5— 9000« — 1800 x°
+ (— 3243+ 4863+ 4626¢5+ 9090« + 2700 X
+ (12963 + 1746¢5— 3600¢o— 1710 x— 1296

+ 162+ 405, (Ad)

+(— 81k3— 495¢5— 225k — 45) 7,

+225k2+ 144K+ 36. (A7)

These results are summarized in Fig. 4.
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